Offer courses in English for exchange students in the acadenic year 2025/2026

WINTER TERM:

KMT/YIDMA The Intr	oductuction to Dic	lactics of Mathema	atics A		
Number of ECTS credits:	5	Course completion:	Exam		
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Jan Wossala		
Semester in which the course is taught: winter					
Description:					
Description: The purpose of this seminar is to introduce students to basic points from didactics of mathematics in prospective mathematics teachers training. The course will be structured to present main didactical principles of mathematical teaching and to practice various activities which are supposed to increase pupils' motivation in mathematics.					

Number of ECTS credits:	5	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Martina Uhlířová
Semester in which the cou	Irse is taught:	winter, summer	
Description:			
The course is designed for	students of primary ar	nd preprimary school tead	her training. The aim o
the course is: to familiaria	ze the students with n	nathematical activities th	at develop creativity o
pupils. Emphasis is placed	on interdisciplinary re	lationships and active wo	ork of students (didacti
games, didactic brix-box, p		•	,

KMT/ YCAL1 Calculu	s 1		
Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Jitka Laitochova
Semester in which the cou	rse is taught:	winter	
Description:			
Differential calculus of real terms of the theory like rea		••	

minima and graph sketching. Content: Basic terms and concepts; limits; derivatives; transcendental functions; application of derivatives; curve sketching with derivatives; approximations of functions (differentials, Taylor's theorem); derivatives of implicit functions; sequences.

KMT/ YCAL3 Calculus 3

Number of ECTS credits:	6	Course completion:	Exam
Completion	50 % attendance,	Lecturer:	Jitka Laitochova
requirements:	tutorial work		
Semester in which the cou	rse is taught:	winter	
Description:			
Differential calculus of fund demonstrated. Main topics:	ctions of two or more v	ariables. Applications of p	oartial derivatives are
n-dimensional space, metri Function of several variable Limit of a function of sever Continuity of functions of s the continuity of composite	es. Domain and range. al variables. Improper I everal variables. Comp e functions.	Geometric meaning of the imit. osite functions of several	e function z = f (x, y).
Partial derivatives of functi function f (x, y). Higher par Differentiable function. Con df(x, y). Complete different Partial derivatives of comp Taylor and Maclaurin's forr Maxima, Minima, and Sado Sufficient conditions for loo	tial derivatives. Schwar mplete differential. Ge ials of higher orders. osite functions. Higher nula. Ile Points. Fermat's the	z theorem. ometrical meaning of the derivatives of a composit	complete differential

KMT/YAG1B Algebra course 1

Number of ECTS credits:	6	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal
Semester in which the course is taught:		winter	
Description:			
The course main objective	is an active understand	ling of basic algebraic con	cepts necessary for
further study of algebra and	d other mathematical	disciplines.	

Introduction to propositional and predicate logic. Algebraic structures with one or two operations. Vector spaces - linear dependency, basis, dimensions, orthogonality. Linear algebra.

KMT/YAG3B Algebra course 3				
Number of ECTS credits:	6	Course completion:	Exam	
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal	
Semester in which the course is taught:		winter		

Description:

The aim is understanding of algebraic solvability of algebraic equations.

Polynomials

Decomposition of polynomials of one indeterminate over the field of complex and field of real numbers. Symmetric polynomials

The main theorem on symmetric polynomials, using symmetric polynomials.

Algebraic solutions of algebraic equations

Binomial equations, algebraic solvability of algebraic equations of the second, third and fourth degrees.

KMT/YIAMB ICT application in Mathematics

Number of ECTS credits:	5	Course completion:	Exam
Completion requirements:	50 % attendance, tutorial work	Lecturer:	David Nocar
Semester in which the course is taught:		winter	

Description:

The subject is focuseed on introducing students to the possibilities of commonly used mathematical software in mathematics education, both within MS Office (mathematical expressions/notation using Microsoft Equation, MathType) and specific mathematical applications used in teaching mathematics at elementary schools, particularly the GeoGebra software.

The course participant uses interactive dynamic software (GeoGebra) for various display methods (e.g., fixed point sets, isometries, homotheties, conic sections, circular inversion) and uses these tools and transformations to solve geometric problems. Another part of the course is dedicated to algorithmization and programming using various robotic tools (programmable digital didactic aids). The final part of the course focuses on 3D printing and its potential applications in mathematics education. The subject meets the requirements for training prospective mathematics teachers in line with the development of digital literacy and computational thinking.

SUMMER TERM

KMT/ YCME Creativi	ty in Mathematics	Education			
Number of ECTS credits:	5	Course completion:	Exam		
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Martina Uhlířová		
Semester in which the course is taught: winter, summer					
Description:					
Description: The course is designed for students of primary and preprimary school teacher training. The aim of the course is: to familiarize the students with mathematical activities that develop creativity of pupils. Emphasis is placed on interdisciplinary relationships and active work of students (didactic games, didactic brix-box, paper handing, solids creation).					

Number of ECTS credits:	4	Course completion:	Exam
Completion	50 % attendance,	Lecturer:	Jitka Laitochova
requirements:	tutorial work		
Semester in which the course is taught: summer			
Description:			
The aim of the course is to	acquire basic English n	nathematical terminology	
We work with English math	nematical texts and rec	ordings of mathematical I	ectures. We are
interested in the basic cond	cepts, propositions and	problems of selected ma	thematical disciplines
such as algebra, geometry	and calculus.		-
We focus on school mathe		nglish mathematics textb	ooks for elementary

KMT/YITME ICT in Mathematics Education Number of ECTS credits: 4 Course completion: Exam Completion 50 % attendance, Lecturer: Jan Wossala requirements: tutorial work Lecturer: Jan Wossala Semester in which the course is taught: summer Summer Description: The aim of the course is to introduce students to the current possibilities of using DT in teaching

The aim of the course is to introduce students to the current possibilities of using DT in teaching mathematics at the first level of primary schools. Much attention will be paid to the possibilities of using digital technologies (e.g. MS Excel, GeoGebra) to support teachers, the educational process and individual work of students. Furthermore, some robotic devices for use in primary schools will be presented.

Students should acquire the skills needed to effectively incorporate computing into teacher training, to integrate computing into mathematics instruction, and to use computers for individual work and homework purposes for elementary school students.

KMT/ YCAL2 Calculus 2

Number of ECTS credits:	6	Course completion:	Exam		
Completion	50 % attendance,	Lecturer:	Jitka Laitochova		
requirements:	tutorial work				
Semester in which the course is taught: summer					
Description:					
Integral calculus of real functions of a real variable. Main topics are indefinite integral, definite					
integral and applications of definite integral.					

Number of ECTS credits:	6	Course completion:	Exam			
Completion	50 % attendance,	Lecturer:	Jitka Laitochova			
requirements:	tutorial work					
Semester in which the cou	rse is taught:	summer				
Description:						
Infinite sequences and infir	nite series of constants	and functions. Basic theo	ry of infinite series.			
Applications of power serie	s.					
Main topics:						
Infinite sequences of numbers.						
minine sequences of numb	Infinite series of numbers - basic terms and concepts.					
•	basic terms and conce	pts.				
•		pts.				
Infinite series of numbers -		pts.				
Infinite series of numbers - Series with non-negative m	embers.	pts.				

KMT/YAG2B Algebra	a course 2			
Number of ECTS credits:	6	Course completion:	Exam	
Completion requirements:	50 % attendance, tutorial work	Lecturer:	Tomáš Zdráhal	
Semester in which the course is taught: summer				
Description:				
The course focuses on expl general range, respectively to polynomials. Students w	. field integrity. The mai	n differences algebraic a	nd functional approach	

to polynomials. Students will also address the divisibility of polynomials over a general body and some methods of finding the roots of polynomials.

KMT/YAG4B Algebra course 4			
Number of ECTS credits:	6	Course completion:	Exam
Completion	50 % attendance,	Lecturer:	Tomáš Zdráhal
requirements:	tutorial work		
Semester in which the course is taught:		summer	
Description:			
The course aims to fully understand to the theory of algebraic structures with several operations.			

Properties of groups. Lagrange's theorem in the group theory. Factor groups. Group homomorphism. Lattices and lattices homorphism. Boolean algebra. Application of lattices and Boolean algebras.